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ABSTRACT 

In this note, quadrature formula is constructed for product integral on the infinite 

interval   ( ) ( ) ,
a

I f w x f x dx


   where w(x) is a weight function and ( )f x  is a smooth 

decaying function for x N (large enough) and piecewise discontinuous function of 

the first kind on the interval .a x N   For the approximate method we have reduced 

infinite interval [ , )x a   into the interval [0,1]t  and used the mixed method: 

Cubic Newton’s divided difference formula on 
3[0, ]t  and Romberg method on 

3[ ,1]t with equal step size, 
0 , 0,..., , 1/ ,it t ih i n h n     where 

0 0, 1.nt t   Error term 

is obtained for mixed method on different classes of functions. Finally, numerical 

examples are presented to validate the method presented. 

 

Keywords: Product integral, Romberg method, mixed method, error estimate.  

 

1. INTRODUCTION 

Integration problems on infinite interval are not defined the same as 

the finite interval it is usually defined as improper integrals  
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( ) ( ) lim ( ) ( ) ,
N

N
a a

w x f x dx w x f x dx



                                   (1) 

where  w x  is a weight function and infinite integral (1) exists whenever the 

latter limit exists. It is known that the continuity of integrant function or 

boundedness of function  f x  is not enough the existence of the infinite 

boundary integral  (1).  Quadrature formula of the type  

 

, ,

0

( ) ( )
n

n j n j n

j

I f w f x


 ,                            (2) 

 

for the estimate of the product integral  

  ( ) ( )
b

a

I fw w x f x dx  ,                (3) 

where a and b are finite numbers and w(x) is a weight function, have been 

extensively studied in the 1970-2000 (Branders and Piessens, Philip 

Rabinowitz and Ian Sloan, Philip Rabinowitz, Gonzailez-Vera and Santos-

Leon, Dagnino and Rabinowitz and so on) and literature cited therein. 

Oscillatory integration problems (Hasegawa, Iserles and so on) have been 

investigated for many decades and recently Kang and Xiang (2013) have 

proposed new techniques for the numerical evaluation of a class of highly 

oscillatory integrals containing algebraic singularities. Error and convergence 

analysis and robust numerical examples are used to demonstrate the accuracy 

and effectiveness of the proposed method. Unfortunately, few works can be 

found on the investigation of the product integral in the infinite interval 

(Simpson, Avram SIDI, Jezequel and Chesneaux, Hascelik). Romberg 

integration for (3) with ( ) 1w x   and its application for solving Volterra 

integral equation on the finite interval have been investigated in Mestrovic 

and Ocvirk. 

 

There are many techniques on reducing the infinite interval into the 

finite interval, but reduction technique brings singularity of the integrand 

function and application of the Romberg rule (Davis and Rabinowitz, Burden 

and Faires) is not very suitable for those parts where singularity appears. In 

this note, we consider product integral (1) and reduce it into the interval 

[0,1]. Moreover as an approximation we have used the mixed method: Cubic 

Newton’s divided difference formula on 3[ ,1]nt   and Romberg method on 

3[0, ]nt   with equal step size. Error estimate is established for the proposed 
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method in the class of function 4[0,1].f C  Finally, two examples are 

provided to demonstrate the efficiency of the method proposed. 

 

2. DERIVATION OF THE APPROXIMATE METHOD  

(CHANGE OF VARIBLE) 

The trapezoidal rule is one of the simplest of the integration 

formulas, but it is not always sufficiently accurate. Thus, the Romberg 

method uses the composite Trapezoidal rule to give preliminary 

approximations, and then applies Richardson extrapolation to obtain 

improved approximations.  

 

Recall the ordinary integration problem 

 

( ) ( )
b

a

I f f x dx                    (4) 

 

Definition 1. (Burden and Faires, pp. 207): Composite trapezoidal 

approximation for (4) of a function  f  on the interval   ,a b  is 

 

  
22

,1 1,1 1
1

1
2 1

2

k

k k k k
i

R R h f a i h



 


 
 
  

     

 

where  

12
k k

k

b a b a
h

m 

 
  , and     1,1

2

b a
R f a f b


     

for each 2,3,..., .k n . 

 

Definition 2 (Burden and Faires (2005)): The Romberg integration rule for 

each 2,3, ,k n  and 2,3, ,j k  is defined as  

 

 , 1 1, 1 1

, , 1 , 1 1, 11 1

1
4

4 1 4 1

k j k j j

k j k j k j k jj j

R R
R R R R

   

    


   

 
            (5) 

 

Theorem 1. (Davis and Rabinowitz (1984)): Let 
2 2[0,1]jf C   be a real 

function to be integrated over [ , ]a b  and ,k jR  be defined in Romberg’s 
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method (5), then remainder term ,k jR  is zero for 2 1jf P  , and truncation 

error of ,k jR  is given by  

 

     
1

2 22

,

0

( ) ,
jj

k j j k tE f R f t dt r h f 


    

 

where  

( 1)
2 22

,
(2 2)!

j j
j

j

B
r

j

 





  with Bernoulli numbers  2 2jB  . 

 

The Romberg technique has the desirable feature that it allows an 

entire new row in the table to be calculated by doing only one additional 

application of the Composite Trapezoidal rule. It then uses a simple 

averaging on the previously calculated values to obtain the remaining entries 

in the row. Moreover, the Romberg method has the advantage that all of the 

weights 
nw  are positive and the abscissas 

ix  are equally spaced.  

 

The development of Romberg integration relies on the theoretical 

assumption that  f x  is smooth enough so that the error in the trapezoidal 

rule can be expanded in a series involving only even powers of  h. 

 

2.1.  Change of Variable  

Due to the reduction technique, most of the infinite integral will be reduced 

to [0, 1] or [-1,1] interval. The substitution  

 

1

,
x

at e x a


   

 

in the product integral (1) yields  

 

         
1

1 1

0a

I fw w x f x dx a w t g t dt


   .    (6) 

 

where    1 1

1
ln , ln .

e e
w t w a g t f a

t t t

   
    

   
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If density function f  in (6) is smooth enough and tends to zero at infinite 

() faster than the denominator  t  of the fraction function 
1( )g t , i.e. 

 

 1
0 0

1
lim lim ln 0.
t t

e
g t f a

t t 

 
  

 
 

 

then product integral (6) is well defined. 

  

Since Romberg method is improvement of Trapezoidal rule and therefore it 

might not work well when density function has a singularity in the domain of 

integration. Fortunately, spline approximation is good for singularity 

problems. For mixed method, we will split the interval [0,1]  into 
3[0, ]t   and 

3[ ,1],t  where ,kt kh  0,1, , .k n  

 

         

   

3

3

1 1

1 1 1 1

0 0

1 2 ,

t

t

I wf a w t g t dt a w t g t dt

a I wf I wf

 
   

 
 

   

                   (7) 

 

where  

           
3

3

1

1 1 1 2 1 1

0

, .

t

t

I wf w t g t dt I wf w t g t dt    

 

The first integral is approximated with modified cubic Newton polynomial 

3( ),L x while the second integral is approximated by modified Romberg 

method 

 

2.2. Construction of Quadrature Formula 

Let 
3( )L x  be defined by the 3-rd order Newton Divided Difference formula 

i.e. 

          

    

3 0 0 1 0 0 1 2 0 1

0 1 2 3 0 1 2

, , ,

, , ,

L t f t f t t t t f t t t t t t t

f t t t t t t t t t t

     

   
 

 

or Modified Newton Divided Difference formula for the function 
1( )g x  is 
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           

           

3 1 2 3 1 0 0 2 3 1 13 3

0 1 3 1 2 0 1 2 1 33 3

1 1
( )

6 2

1 1

2 6

L t t t t t t t g t t t t t t t g t
h h

t t t t t t g t t t t t t t g t
h h

        

       

    (8) 

 

Let us consider the first integral in (7).  

 

       

             

           

 

3

3

1 1 3 1 3

0

1 1 2 3 1 0 0 2 3 1 13 3

0

0 1 3 1 2 0 1 2 1 33 3

3

1
0

1 1

6 2

1 1

2 6

( ) ,

t

t

k k
k

I wf I wL w t L t dt

w t t t t t t t g t t t t t t t g t
h h

t t t t t t g t t t t t t t g t dt
h h

A h g t










 

        

       









  (9) 

 

where  

    

    

    

    

3

3

3

3

0 1 1 2 33

0

1 1 0 2 33

0

2 1 0 1 33

0

3 1 0 1 23

0

1
( ) ,

6

1
( ) ,

2

1
( ) ,

2

1
( ) .

6

t

t

t

t

A h w t t t t t t t dt
h

A h w t t t t t t t dt
h

A h w t t t t t t t dt
h

A h w t t t t t t t dt
h

    

   

    

   









 

 

For the second integral in Eq. (7) the following substitution (Gonzailes-Vera 

and Santos-Leon (1996)) 

 

 

   
3

1

1

3

1
( ) , 0 ,

( ) , ,1

t

t

y H t w d c
c

t L y H t t t

 



    

  

                     (10) 

 

is used to construct quadrature formula. Additionally here and hereafter, 

1( )w t  is assumed to satisfy 
1( ) 0w t   on [0,1]  with 

1

1

0

( )w t dt c   , and 
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1( )w t  does not identically vanish on any subinterval of  [0,1]. So that for the 

integral 
2 ( )I wf   in Eq. (7) we have the following trapezoidal formula 

 

 
3

1 1 1

2 1 1 1 10 1 1
10

1
( ) ( ) ( ( )) 2 ,

n

N l
lt

I wf w t g t dt g L y dy g g g
n





 
 
 

        

where 1 11 ( ( )), 0,1,...,lg g L y l n  . 

 

Let  

 
2

1,0
2

" ( ), 2 , 1

k

k
k k k k

j

T h g h j h k



   , 

 

be trapezoidal sums on the interval [0,1].  The double prime indicates that the 

first and last term are to be multiplied by 
1

2
.  

 

Now we can use Romberg integration rule which can be written as 

 

 , 1 1, 1 1
, , 1 , 1 1, 11 1

1
4 .

4 1 4 1

k m k m m
k m k m k m k mm m

T T
T T T T   

    


   

 
         (11) 

 

where 1,2,...,k n  and 1,2,..., .m k  Thus quadrature formula for product 

integral (7) is calculated by (9) and (11). 

 

 

3. CONVERGENCE ANALYSIS 

It is known from the theory of Lagrange interpolation formula that 

the errors estimate of interpolation polynomials depends on the smoothness 

of the integrant function. 

 

Theorem 2 (Burden and Faires (2005)): Let 
( 1)[ , ],nf C a b then the error 

estimate of Lagrange interpolation formula is  

 

 
   

( 1)

0( ) ( ) ( ) ...
( 1)!

n
x

n n n

f
R x f x L x x x x x

n



    

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Particularly, for the function 
1( )g t  with  3n  and interval 

3[0, ]t t  we have  

 

     
 

   
4 (4)

1
3 1 3 1 2 3 ,

4!

th g
R t g t L t


   


        (12) 

 

where 

0
0

1
, , 0

t t
h t

h n



   . 

 

Hence, we will proof the following main theorem. 

 

Theorem 3: Let 
4[0,1]f C , and ,3kT  be defined in Romberg’s method 

(10), then remainder term ( )E wf  is zero for all 
4f P  and truncation error 

of  ( )E wf  has the form  

5

1 3 ,3( ) ( ) ( ( ) ) ( ).kE wf I wf I wL T O h     

Proof.  

We write   

 

    

  
3

1

1 1 1 3 ,3

0

1

1 1 3 1 ,3

0 0

( ) ( )

( ) ( ) ( ( ))

k

t

k

E wf w t g t dt I wL T

w t g t L t dt g L y dy T

  

   



 

 

 

Due to Theorem 1 and 2 and Eq. (11) yields  

 

       66 5 6 5
1 2 1 3 1( ) 3 .n kE f g P w h h r g O h O h O h       

 

where the norm  is the Chebyshev norm. Theorem 3 is proven. 

 

 In this section, we have shown that the proposed mixed method is to 

be uniformly convergent on the infinite interval to the to the integral with the 

minimum order 5( ).O h  It shows that mixed method has a higher accurate 
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approximation method and it decreases very fast by increasing the number of 

points.  

 

4. NUMERICAL EXAMPLES  

Example 1: Let us consider the following product integral. 

 
1

2 2 2
1

0 0

10 ( 1) 10 [(ln ) 1] .xQ e x dx y y dy



      

 

Solution: Exact solution of the product integral 1Q  is 1 7.5.Q   This product 

integral has a singularity at the point “0” but this singularity is removable 

singularity. Numerical results and comparisons are given in Table 1. 
 

TABLE 1: Comparison of the Mixed method with Romberg method for problem 1Q  

 

N C 
Exact 

value 

Romberg 

method 

Mixed 

method 

Error 1 (Exact 

and Romberg) 

Error 2 (Exact 

and Mixed 

Method) 

16 1 7.50 7.429370880 7.467471252 0.070629120 0.032528748 

2 7.50 7.473458648 7.466256983 0.026541352 0.013743017 

32 1 7.50 7.476584315 7.489618657 0.023415685 0.010381343 

2 7.50 7.492322326 7.490176929 0.007677674 0.003823071 

64 1 7.50 7.492510676 7.496606434 0.007489324 0.003393566 

2 7.50 7.497819662 7.497197233 0.002180338 0.001802767 

256 1 7.50 7.499290705 7.499647302 0.000709295 0.000352698 

2 7.50 7.499831319 7.499781475 0.000168681 0.000118525 

 

N = number of points, C=number of column in Romberg’s method. 

 

Example 2: Find an approximate solution of the product integral. 

 
13

2
2

0 0

1 sin
sin

t
Q x dx dt

x t


  

  
 

   

 

Solution: This product integral has a singularity at the end point “0” and at 

this singular point integrant function tends to zero. Therefore we can use 

Romberg method. The exact solution is 2 0.6205366.Q   

 

 



Z. K. Eshkuvatov et al.  

 

80 Malaysian Journal of Mathematical Sciences 

 

TABLE 2: Comparison of the Mixed method with Romberg method for problem 2Q   

 

N C 
Exact 

value 

Romberg 

method 

Mixed 

method 

Error 1 

 (Exact and 

Romberg) 

Error 2 

 (Exact and 

Mixed method) 

16 1 0.62053661 0.61732721 0.61878139 0.00320938 0.00175515 

2 0.62053661 0.61926835 0.61899556 0.00126824 0.00114104 

32 1 0.62053661 0.61939787 0.61989174 0.00113872 0.00064486 

2 0.62053661 0.62008810 0.61999152 0.00044849 0.00034508 

64 1 0.62053661 0.62013298 0.62030369 0.00040361 0.00023291 

2 0.62053661 0.62037801 0.62034384 0.00015858 0.00011276 

256 1 0.62053661 0.62048602 0.62050695 0.00005057 0.00002965 

2 0.62053661 0.62051683 0.62051250 0.00001976 0.00001410 

 

N = number of points, C=number of column in Romberg’s method 

 

Tables 1-2 show the comparison results between proposed mixed 

approximation method and classical Romberg method for different number of 

points. Both methods are convergent to the exact solution when the integrant 

function has removable singularity. Generally, the computational results show 

that the proposed method is performed slightly better when compare to that 

standard Romberg method.  

 

5. CONCLUSION 

In this paper, we have constructed quadrature formula for product 

integral in the infinite interval. Mixed method is used to get approximate 

solution. Theorem 2 shows that mixed method is exact for the polynomial of 

degree 4 and order of convergence is at least 5. Many new results can be 

obtained from the approximation of the mixed method. From Table 1 and 

Table 2, we can conclude that the mixed method is more accurate compared 

to that classical Romberg method which is very reliable for product integral. 
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